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Learning Goal for Module 5 
 
Probability theory underlies statistics, econometrics, and simulation modelling. This Module introduces 
basic ideas of statistics, presents several probability distributions that find wide use in analytics, and 
develops the Excel needed to with probability problems. 

 

By the end of this Module, you will: 
 

• Understand and explain basic concepts of probability 

• Appreciate the idea of a probability distribution and be able to work with the major discrete 
(binomial and Poisson) and continuous (normal and lognormal) distributions using Excel 

• Understand the concepts of null and alternative hypothesis 

• Apply the difference of means tests. 
 

 

1. Introduction 

We are all used to checking the weather each day. We rely on 
the forecasts to plan our day: what to wear; whether to plan a 
picnic; and, if you run a restaurant with a patio in the 
summer, whether to move your reservations indoors. One 
part of the forecast is the probability of precipitation (POP). A 
POP equal to 0 means there is no chance of any rain or snow, 
while a POP of 1 means it is currently raining or snowing. 

If the probability is wrong, we may close the patio in 
anticipation of rain, and when it turns out to be sunny, our competitor across the street may get 
the business. Sometimes a wrong forecast is inconvenient, but other times it can be a matter of 
life and death, such as during the D-Day invasion of France by the Allies in the Second World 
War. 

Probability is a fundamental idea in economics and business. While ancient philosophers had 
some ideas about probability, they really did little to develop the ideas. It was not until Italian 
mathematicians studied gambling games that formal probability ideas appeared. 

1.1. Probability problems 

Example - Outdoor restaurant 

It is summer, and your outdoor patio is busy. However, you know that if it rains, fewer people 

will come to sit inside, and you will need fewer staff. You pay staff a show-up payment (two 

hours wages) but need to call them four hours ahead of their shift. It is noon; the weather 

forecast calls for 40% rain by 6 p.m. Do you call in the extra staff for the evening shift? 

 

Wet bias occurs in weather 

forecasting. Meteorologists tend to 

adjust POP upward under the 

assumption that it is “safer” to over-

predict rain than to issue low 

probabilities.  

https://www.history.com/news/the-weather-forecast-that-saved-d-day
http://economicspsychologypolicy.blogspot.com/2014/06/wet-bias-in-weather-reporting.html
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Example - Gambling problem 

• Assume two gamblers are playing a best-of-five dice game and are interrupted after three 
games, with one gambler leading two games to one. 

• What is the fairest way to split the pot if the game cannot resume? 

The solution requires a probability model that predicts the winnings of each player on games 
4 and 5 given the winnings to date. Do the winnings to date matter? 

Example – Parking problem 

Driving to the mall, you want to park as close to the entrance as possible since it is winter. You 
know as you get closer to the mall entrance, the number of free places will decline. Do you 
take the next spot or keep going, hoping to find a closer space? This is the “optimal stopping 
problem.” 

Example – Vaccine efficacy 

Twenty-five thousand adults take part in a randomized, double-blind clinical trial for a new 
COVID vaccine. Researchers randomly distribute 12,500 participants to the treatment group 
and 12,500 participants to a control group. Neither the researchers not the participants are 
aware of the group assignment of any specific participant (double blindness). The treatment 
group receives the vaccine, and the control, a placebo (fake vaccine that looks exactly like the 
real vaccine). Monitoring of each group occurs for three months and, at the end, 567 
members of the treatment group contract COVID while 1,201 members of the control group 
become infected. Is the vaccine effective? 

1.2. Introductory ideas 

Probability is all about the future and managing uncertainty. Any event that has occurred in the past is 

certain and has a probability of 1, which is not interesting. The probability of any future event, such as the 

amount of rain to occur tomorrow or whether a head or tail will come up on the next toss of a coin, must 

be between 0 and 1. The chance of a head from the toss of a fair coin is .5. We can express this as 50/50 

or 1 in 2 odds. 
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Probability can appear as a decimal, a percentage, or as odds. The odds of a head on a coin toss 

are 1 in 2. The probability of a “1” on the toss of a die is 1 in 6 or .16666666. The odds of any 

event is 1 divided by the total of all possible outcomes. The chance of a 1, 3, or 6 on any toss of a 

die is (1+1+1)/6, or 3 in 6, or 1 in 2. In other words, probability of a 1, 3, or 6 on a single toss of a 

fair die is .5 or 50%. 

Table 1: Outcomes for a single toss of a die 
Outcome (Result 
of the toss) 

Probability 
(PDF) 

Cumulative 
probability 
(CDF) 

1 1/6 1/6 
2 1/6 2/6 
3 1/6 3/6 
4 1/6 4/6 
5 1/6 5/6 
6 1/6 6/6 = 1 

 Sum = 1  

 

Sample space 

Listing all possible outcomes from a “trial” defines the sample space. A trial can be as simple as a single 

toss of a coin, throws of a single die, simultaneous tosses of several coins, or many sequential throws of a 

die. Complex experiments or simulations with many trials can create large and complex sample spaces. 

A trial with two sequential tosses of a coin creates the following sample space – one version is a 

qualitative sample space and an identical one translated to a numerical sample space. 

 

 

 

 

 

 

 

 

 

 

PDF (probability density function) 
is the probability that x will take on 
exactly the value xi or P(=xi). 
 
CDF (cumulative density function) 
is the probability that x will assume 
at least a specific value xi, (P<xi). 
 

(1,0) (1,1)

(0,1)(0,0)

Heads

Tails

Figure 1: Sample space for sequential coin toss 
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Event 

An event is a subset of a sample space. In a trial with two sequential tosses of a coin, an event might be 

“at least one tail occurs” or “no tails occur.” The nature of the problem defines the sample space and any 

or all possible events. A trial is a specific experiment that produces one or more events. A simultaneous 

toss of two fair dice is a trial; the outcome “the sum of the two tosses of the  dice is exactly 3” is the 

event, and the sample space appears below. The sample space has 36 possible outcomes, and the event 

“sum of the two tosses of the dice is exactly 3” has the probability of 2/36 or 1/18. Note that a trial with 

two sequential tosses of the same coin/dice or two simultaneous tosses of two coins/dice produces the 

same sample space. 

Table 2: Sample space for tossing two dice 
 Die 1 

D
ie

 2
 

 1 2 3 4 5 6 

1 1,1 2,1 3,1 4,1 5,1 6,1 

2 1,2 2,2 3,2 4,2 5,2 6,2 

3 1,3 2,3 3,3 4,3 5,3 6,3 

4 1,4 2,4 3,4 4,4 5,4 6,4 

5 1,5 2,5 3,5 4,5 5,5 6,5 

6 1,6 2,6 3,6 4,6 5,6 6,6 

 

1.3. Probability 

Three different views define probability. 

• The classical or objective view is that one can calculate probabilities just by counting the 

events in the sample space and using arithmetic and algebra to figure out the probability 

of any event. For events arising from “two sequential tosses of a coin,” the occurrence of 

“at least one tail” is 3/4. Enumerating all possible outcomes {HH, HT, TH, TT} = 4, of which 

3 have at least one tail, supplies the answer. A key assumption in this simple example is 

that each single outcome is equally likely. 

Objective probabilities enumerate all possible outcomes, where natural laws, counting, 

and logic allow us to calculate the theoretical range of all possible outcomes, and then 

state that the probability of not getting a 7 or 11 on either of a single toss of a pair of fair 

dice is 7/9 and the probability of not getting a 7 or 11 on two tosses of the same pair of 

dice is 49/81. Work these examples out using pencil and paper. 

• The frequentist view uses “real world” observations. If one flips a coin many times 

(thousands), then the probability of a head is just the number of occurrences of a head 

divided by the total number of tosses. Series of trials, each with 1,000 tosses, might 

produce results such as 489, 502, 515, 498… heads, and a frequentist would simply take 
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the average. A frequentist would also notice that results where there are 100, 25, or even 

0 heads would be progressively less frequent. 

By defining a trial as sequential tosses of two coins, we might expect, after 1,000 trials, 

that 3/4 (75%) would include a tail, but what if we cannot assume the chances of a head 

equals those of a tail? The process of creating a coin means that more material may be 

on one side or the other, biasing ever so slightly the changes of one result over the other. 

Also, just how large is “many times?” How many tosses do we need to ensure that the 

percentage of tails in any pairs has stabilized? Finally, imagine your thumb after even just 

25 tosses – your ability to toss consistently wanes fast. 

The frequentist approach is the only alternative when we have no logical basis for 

calculating the probability of events. For example, on average, out of 100 babies born, 51 

will boys and 49 girls. This ratio is not stable. Variation exists country to country, but the 

constancy of results over many years and across many countries increases our 

confidence that this ratio is a fundamental relationship. 

• The subjective view sees any statement of probability as an expression of opinion. For 

example, in December 2019, the statement “The next president of the United States will 

be a woman” might have been a reasonable opinion given that there were at least four 

women contending for the Democratic nomination. In early March 2020, when Joe Biden 

surged in the voting and Elizabeth Warren dropped out, the probability that the 

president of the United States in January 2021 would be a woman dropped to 0 as no 

women remained in contention. 

Therefore, under a subjective view, probability measures the “degree of belief” arising 

from judgment. That judgment may derive from logic or observation or a “feeling.” 

Measurement of subjective probabilities appears often in sports betting, where bookies 

set odds based on history, recent race results, and how individual bettors place their 

money. A more complex way to measure subjective probability is to imagine a choice 

where you could win $1,000 tomorrow with a certain probability or could receive x% of 

that sum today with certainty. The value of “x” needed for you to take the money now 

reflects your degree of belief that you could win the prize the next day. If the chance of 

winning the money tomorrow is 90%, would you take $800 or wait till tomorrow? 

Each view of probability has its purposes and limitations. The objective view requires a finite 

sample space that we can count. But no actual mechanical process, being it flipping a coin or 

tossing a die, can be “fair.” Physically, the head and tail on any coin has different amounts of 

metal, and the depressions on dice are different for a 1 or a 6. 

Frequentists rely on measuring repeatable instances under constant conditions. Many natural 

laws resulted from experiments with many trials. But recording outcomes over an extended 

https://ourworldindata.org/gender-ratio
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period requires that we know the error in the process that generates the outcome, and to 

calculate the error we need to know the probability … now the dog is chasing its tail. 

Finally, a subjectivist faces the challenge of consistency. When asked the chances of 1 boy in a 

family of 6 children and the probability of 6 heads in 6 tosses of a coin, they need to respond 

1/64. Since subjective probability appears in statements such as “Canada’s GDP will increase by 

more than 3% has odds of 1 in 5,” validation occurs when time reveals the truth. A subjectivist 

must then revise their views in the light of added information. Such revising of subjective 

probability in the face of new evidence reflects a Bayesian approach, favoured by statisticians. 

Example: The Manitoba Public Insurance Rate Calculator lets you calculate the 
approximate costs of insurance based on the attributes of the driver. A massive database 
of accidents supports the probability of accidents and damages based on the attributes of 
a driver (age, gender, etc.), the attributes of the car (new luxury cars cost more to 
replace/repair than older, basic models), and other factors. This approach calculates 
probabilities using the frequentist approach. 
 
Example: The POP (probability of precipitation) on weather websites uses complex 
meteorological models to develop the probability of rain/snow.  

 

Definitions are important: 
• Ex-ante (before the fact). When we calculate frequency distributions objectively or 

subjectively, we assess variability before events occur. Since the events have not 
occurred, the final outcomes may not align with our beliefs before the fact --- this is 
termed prediction risk. 
 

• Ex-post (after the fact). We measure the variability after events have occurred, 
typically by recording events from large datasets. There is no risk associated with 
events that have occurred, but we use that information to project forward. 
 

• Risk has two measures: 
 
1. Estimation of probabilities of events occurring based on formal (mathematical 

models) (ex-ante) 

Example: Tossing a coin has a 50% chance of a head and 50% chance of a tail. 

 
2. Estimation of probabilities of events based on past occurrences (ex-post) 

Example: Car insurance rates are based on driving records within a class (age, 
gender), driving history (accidents, speeding tickets increase rates), or age/cost of 
the car. This is the frequentist approach just discussed. 

 
• Uncertainty. Strictly this reflects the absence of any basis for assigning a probability to 

outcomes. Uncertainty occurs when measuring the risks of outcomes is difficult. 

http://apps.mpi.mb.ca/DSR/DSRCalculator.aspx.
http://www.accuweather.com/en/cn/beijing/101924/daily-weather-forecast/101924
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Strategies to manage uncertainty include using a range of alternative values for risk 
and simulating outcomes over many trials. 

 

1.4. Basic rules of probability 

Probability follows basic rules. Any logical or mathematical expression that follows these rules 

can serve as a probability statement. Start by defining an event (such as the result of a coin toss 

or dice toss). The result from any toss is xi and may be a head or a tail (or a 1,2,3… in the case of 

a dice toss). The rules are as follows: 

1. The probability of any event must lie between 0 (no chance it can occur) and 1 (complete 

certainty it will occur). Formally, the rule is 0 1 iPX . 

2. The sum of the probabilities of all outcomes is 1. The rule appears as 
1

1
n

i

i

PX
=

= . 

3. The probability of a certain event is 1 and the probability of an impossible event is 0. 
 

1.5. Pascal’s triangle – An early probability model 

Pascal’s triangle shows the results of even odds games (tossing a coin). An illustration is the 
gender ratio, which we will assume to be 1:1, implying that the probability of a boy or a girl 
resulting from any birth is .5, as shown in Row 2 of Table 3. 
 

Table 3: Pascal's triangle 

 
Row 

←Boys Girls→  Row 
sum 

Number of 
children 

1 1 1 0 

2 1 1 2 1 

3 1 2 1 4 2 

4 1 3 3 1 8 3 

5 1 4 6 4 1 16 4 

6 1 5 10 10 5 1 32 5 

7 1 6 15 20 15 6 1 64 6 

 
 
 
 
With two children (Row 3), the probability of all boys is 1/4 and all girls is also 1/4. The probability of a 
boy and a girl is 1/4 + 1/4 = 2/4, and this appears in Row 3. If a couple has 6 children, go to Row 7, 
representing 6 children, add the total (64). The chances of all boys or all girls is 1/64. The chance of 3 boys 
and 3 girls is 20/64. 
 
 
 

With 6 children, 

the chance of 0 

boys and 6 girls 

= 1/64 

Chance of 1 boy and 5 

girls = 6/64 

Chance of 3 

boys and 3 girls 

= 20/64 
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1.6. Odds 

Gambling, such as betting on horse races, uses the equivalent concept of “odds” as opposed to fractions 

of percentages to describe probabilities. The probability of getting exactly 3 on the toss of two fair dice is 

1/18 or, equivalently, odds of 1 in 18, or 18 to 1 against getting the result “exactly 3.” In Table 3, the odds 

of 2 boys (and 1 girl) in a family of three children is 3 in 7, while the odds of 3 boys (or 3 girls) is 1 in 7. 

Econometric models use odds or, more precisely, log odds to measure results. 

1.7. Further concepts in probability 
 
Other concepts and rules of probability support the analysis of the outcomes. 

 
• Outcomes in probability are termed events. The event associated with a coin toss is 

either a head or a tail (but not both). 
 

• Mutually exclusive events cannot occur at the same time. A head and a tail cannot 
occur on the same toss of a coin. Someone cannot be the sister and the daughter of 
the same person. The probability of two mutually exclusive events is the sum of 
their probabilities. If we toss a coin and a die at the same time, the probability of a 
head and a 1 is .5 *.166667 =.08. The outcome of the coin toss is independent of 
the dice throw. The value .08 states that, on 100 simultaneous tosses of a coin, the 
combination of a head and a 1 will occur about eight times on average. The results 
of the first 100 tosses may not be the same as the results of the second 100 tosses 
but repeat these sets of 100 tosses many times and, on average, the combination of 
a head and a 1 will occur 8 times out of a hundred. 
 

• When event A changes the probability of event B (or vice versa), A and B are 
dependent events. 

 
• When the occurrence of event A has no effect on the probability of event B, then A 

and B are statistically independent. 
‒ Example: The events of a head and a tail on the same toss are mutually 

exclusive. 
‒ Example: The outcomes of two sequential tosses of a coin are 

statistically independent. The result of the first toss does not affect the 
result on the second. 

Statistically independent events imply that knowing the outcome of one event 

does not affect your estimate of the probability of the second. Tossing two coins 

in sequence (one after the other) is an example of statistical independence; the 

result on the first toss cannot affect your prediction of the outcome of the second 

toss. Mutually exclusive events are, by definition, statistically independent, but 

statistically independent events need not be mutually exclusive. 
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• The probability (occurrence), P, that an event can occur “r” ways out of “n” is r/n, 
and the probability of non-occurrence is 1-P. 

 
Example: The probability that the sum of the toss of two dice is less than or equal 
to 5 is 10/36, and the probability that the sum is more than 5 is 26/36. 

Example: (See Table 4) The probability of drawing an ace from a deck is P1 = 4/52, 

and (replacing the cards from the first draw) the probability of selecting a 6 is P2 = 

4/54. The probability of drawing an ace and then a 6 is 4/52+4/52 = 2/13. These 

events are mutually exclusive (and therefore independent events), which allows us 

to simply add probabilities. 

 

 Table 4: Sample space for card draw from a complete deck 

 
A♦ 2♦ 3♦ 4♦ 5♦ 6♦ 7♦ 8♦ 9♦ 10♦ J♦ Q♦ K♦ 

 
A♥ 2♥ 3♥ 4♥ 5♥ 6♥ 7♥ 8♥ 9♥ 10♥ J♥ Q♥ K♥ 

 
A♣ 2♣ 3♣ 4♣ 5♣ 6♣ 7♣ 8♣ 9♣ 10♣ J♣ Q♣ K♣ 

 
A♠ 2♠ 3♠ 4♠ 5♠ 6♠ 7♠ 8♠ 9♠ 10♠ J♠ Q♠ K♠ 

 

Example: The probability of drawing an ace on the first draw from a deck is E1 = 4/52, 

and the probability of drawing a spade is E2 = 13/52 on the second draw. The probability 

of drawing an ace on the first draw or a 6 on the second draw is 4/52x4/32 = 4/416. 

These events are statistically independent. 

 

 

Example: The probability of drawing an ace and a spade is 1/52, while the probability of 

drawing an ace or a spade is 17/52 (Table 5). 

 

 
Table 5: Sample space for card draw from a complete deck 

 A♦ 2♦ 3♦ 4♦ 5♦ 6♦ 7♦ 8♦ 9♦ 10♦ J♦ Q♦ K♦ 

 A♥ 2♥ 3♥ 4♥ 5♥ 6♥ 7♥ 8♥ 9♥ 10♥ J♥ Q♥ K♥ 

 A♣ 2♣ 3♣ 4♣ 5♣ 6♣ 7♣ 8♣ 9♣ 10♣ J♣ Q♣ K♣ 

 A♠ 2♠ 3♠ 4♠ 5♠ 6♠ 7♠ 8♠ 9♠ 10♠ J♠ Q♠ K♠ 
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Example: If the probability of rain 

tomorrow is .5 and the probability 

that it will rain the day after is .25, 

then the probability it rains on both 

days is .125. Caution! Assuming that 

the weather on successive days are 

independent events is a strong belief 

and wrong. 

 

 

 

 

 

 

 

This table summarizes the relationship between independent/dependent and 

exclusive/non-exclusive events. 

 

 

 

 

 

 

 

 

 

 

 

 

 

• Conditional probability reflects how two events, E1 and E2, are linked. The probability of E1 
given that E2 has occurred is P(E1|E2) or Probability of E1 given E2 has occurred. If 
P(E1|E2) = 0, then E1 and E2 are independent events. 
 

• If E1E2 denotes E1 and E2 occurring at the same time, then P(E1E2) = P(E1) x P(E1|E2) for 
mutually exclusive events. 

 

Example. Think about tossing a coin repeatedly. If the chance of heads is 1/2 on any toss, 

then the chance of a head on the 13th and 17th toss is 1/2 x 1/2 = 1/4 since the tosses are 

independent events. 

 

Table 6: Events 

 
Independent Dependent 

Ex
cl

u
si

ve
 No (not possible) Yes (rolling a 2 on a die and a 

3 on the same die, but 
separate toss) 

N
o

n
-

ex
cl

u
si

ve
 Yes (rolling a 2 on a 

die and a 3 on 
another die) 

Yes (rolling a 2 on a die and 
an even number on the same 
die) 

The idea of “on average” is important. If you toss 

a coin and it turns up heads, “on average” the 

next toss should return tails with 50% chance and 

heads with 50% chance. Tossing a coin 10 times 

should return heads on five tosses and tails on the 

other five, but a chance exists for all heads or all 

tails (.000976 to be precise). The actual pattern of 

outcomes on experiments with few trials will 

usually deviate from the pattern that appears 

from many trials. 
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1.8. Probability functions 

It is possible to describe simple probability operations, such as tossing a coin or throwing a die. In 

other instances, important probability relationships require algebraic expressions termed 

distribution functions. In general, the term “probability distribution” covers the general idea of a 

probability operation; economists typically use discrete and continuous distributions: 

• Examples of discrete distributions are the binomial (Bernoulli) and Poisson. 

• Examples of continuous distributions are the uniform, normal, and lognormal. Other 

important distributions in regression modelling are the t and F. 

The probability distribution function (PDF) shows the probability for an event as a single 

outcome, typically expressed as the probability of exactly a 2 on a single throw of the die. The 

cumulative distribution function (CDF) shows the probability for a range of single outcomes, 

typically expressed as the probability of at least a 4 on a single throw of a die. Interpreting the 

texts describing a problem is fundamental to deciding whether to choose the PDF or CDF. 

Interpreting the meaning of the text describing a probability problem is also important to 

deciding which probability distribution to use. 

 

Consider the PDF and CDF for a single toss 

of a die (Figure 2). Notice that the total 

area under the PDF (the rectangle ABCD) 

has the same value as the CDF at its 

maximum or the value 6. The probability of 

a “1” on the face of the die is 1/6. If we 

wish to calculate the probability of “at 

least a 4,” then the shaded area of the PDF 

shows this, as does the value of the CDF at 

4 (4/6). The area under the PDF for all 

possible events is 1, as is the value of the 

CDF when all events are counted . 

The CDF always has a value equal to the 

sum of all possible values of the PDF 

thereafter. Both the PDF and the CDF 

uniquely describe the probability process in question. The language of the problem decides 

which to use. 

 
 

1 2 3 4 5 6

1/6

2/6

3/6

4/6

5/6

6/6

CDF

PDF

Outcome of Toss

Pr
ob

ab
ili

ty
 

A

B

D

C

F

Figure 2: Die toss PDF and CDF 
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Example: Find the PDF f(x) and CDF F(x) for X=heads on both of two sequential tosses of a 

fair coin. There are four outcomes, so we phrase this as “What is the probability of 

getting at least 1 head in two tosses of a coin?” 

Note that the CDF usually appears as F(X) and the PDF as 

f(x). 

 

1

1 1 2

1 2 2 3

1 2 n

0                                          < x  x

( )                                  x  x x

( ) ( )                     x x x
( )

:

( ) ( ) ... ( )     x x <            

         

 

 

+  
= =

+ +  n

f x

f x f x
PDF f x

f x f x f x

     











 

Here f(x1) – HH, f(x2) = HT…. 

 

  

0                 - <x 0

1/ 4             0 x 1
( )

3 / 4             1 x 2

1                  2 x

 


 =
  


  

CDF F x  

 

An important idea is that probability may find expression at a point, f(X), but usually we 

are interested in the probability over a region, such as the probability of contracting 

COVID for those aged between 15 and 30. 

 

 

1.9. Where do distributions come from? 

Large datasets often reveal information through summary statistics. Measures of central 

tendency and variation are the most common summary statistics. Creating a “picture of data” 

can produce useful insights by classifying or grouping data. Ordinal classes rest on subjective 

P(HH) = 1/4, P(HT) =1/4; P(TH)=1/4 and P(TT)=1/4 

HH

1/4

2/4

3/4

4/4

HT TH TT

P
ro

b
ab

ili
ty

 

Outcome

CDF=F(X)

PDF=f(X)

If the problem is to find the probability when X is a specific value (income equals $90,000), 

use the PDF. If the problem is to estimate the probability over a range of X (e.g., income lies 

between $90,000 and $120,000), use the CDF. 

 

Figure 3: PDF and CDF for two, coin tosses 
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categories, such as good, better, or best. On surveys, such as course evaluations, the five-point 

Likert scale may be used – strongly agree, agree, neither agree nor disagree, disagree, and 

strongly disagree. Module 3 covered the mechanics of creating a frequency distribution using 

the function =COUNTIF and the Data Analysis ToolPak. 

However, most empirical frequency distributions arising from research do not automatically 

define a probability distribution. A range of statistical tests support the inference that your data 

follow a specific distribution; often one cannot find a mathematical expression for the 

distribution. 

In the abstract, the PDF shows the probability (a number between 0 and 1) that a specific value 

of “Xi” occurs. By adding up all the values of P(Xi) we define the CDF. The exact (mathematical) 

relation between the PDF and the CDF will become plain as we move through four important 

probability distributions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2. Four important probability distributions 

Certain mathematical formulas define a probability distribution and cumulative distribution 

function. If these functions correspondent to 

“natural” phenomena, then algebraic 

By choosing parameters carefully, many 

generic functions can function as probability 

functions/distributions. Here, by choosing a 

and b correctly, the shaded area will have the 

value of 1 and yield a CDF. Only quite special 

mathematical functions meet the condition 

to serve as probability distributions. 

From Error! Reference source not found., the a

rea under the PDF (f(a →a*)) equals the 

height of the CDF at F(a*). The probability of 

events up to and including a* (but not higher) 

is the shaded area under the PDF and the 

value of the CDF at a* or F(a*). 

Some probability specific functions appear 

from common gambling games and others 

from natural phenomena. 

Video:  Uniform Distribution 

Note that the PDF (probability distribution y 

function) is called  the probability mass 

function. 

 

 

https://vimeo.com/735286616
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manipulation of the function may return insights into those phenomena. The probability 

distributions of most interest include those used in modelling economic and business processes, 

namely the binomial, the normal, and the lognormal, as well as distributions used in the 

evaluation of statistical/econometric models, such as the t, F and Chi Square, which we do not 

study in detail. The simplest distribution is the uniform distribution, which we obtain when using 

the =RAND() formula. We will use this distribution extensively in modelling. 

2.3.  Binomial distribution 

If p is the probability that an event occurs on any specific trial (probability of success), and the 

only other possibility is as failure q, defined as q=1-p (probability of a failure), then the 

probability of X successes in N trials is 

!
( )

!( )!

X N X X N X
N N

p X p q p Q
X X N X

− − 
= = 

− 
 

  

Example: The probability of getting exactly five heads in six tosses of a fair coin is 

 

We assume a fair coin in which p(Heads) =.5 = p(Tails) = 1 - p 

 

Aside from pass/fail courses, the binomial distribution 

occurs anytime events take on stop/go, on/off, 

life/death situations. Only two outcomes exist 

 

Properties of the Binomial Distribution 

Mean μ=Np 

Variance  σ2= Npq 

Standard Deviation σ =(Npq)1/2 
 

Example: In 1,000 tosses of an unfair coin (p(Heads) =.4), the mean number of heads is 

400, which is the number of heads on average or the expected number of heads. Then 

the standard deviation = (1000*.4*.6)1/2 = (1000*.4*.6)^.5=15.49. 

 

 

Video: Binomial Distribution 

Binomial.xlsx 

https://vimeo.com/735286182
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2.4. The normal distribution 

Certainly, the workhorse of statistics is normal distribution, developed by Carl Gauss in 

the early 19th century to explain measurement errors in astronomy. It has the 

characteristic “bell” shape and found 

application in modelling human attributes 

(height, intelligence…). See []. 

 

2 21/2( ) /1
( )

2

xf x e  

 

− −=
 

With standardized data z-(X-μ)/σ, the equation becomes 

21/21
( )

2

−= xf x e . 

 See  

 

 

 

Example: Assume that elite athletes have careers characterized by the normal – slow 

start, then acceleration, followed by decline and retirement. If the career of a National 

Hockey League player is 825 games on average, with a standard deviation of 250: a) 

What is the probability a newly drafted player (with no games played) will play exactly 

700 games; b: What is the probability the player will play fewer than 700 games; c) More 

than 1,000 games? Use Excel. 

Answer: a. Using the =NORMDIST(700,825,250.FALSE) =.001408. b. 

=NORMDIST(700,825,250,TRUE)=.308538, c) 1 – NORMDIST(1000,825,250,TRUE)=1 -

.758036. Note: In part c, you first need to calculate the probability of playing at least 

1,000 games. Then we subtract this from 1. 

 

 

2.5. The lognormal distribution 

Video: Normal Distribution Video: Plotting the Normal Distribution 

Standardizing data: We standardize a 

set of numbers by subtracting the 

mean from each number. 

Normal.xlsx 

Standardize.xlsx 

https://vimeo.com/735286401
https://vimeo.com/735286512
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By simply changing the “x” values in the lognormal distribution, one obtains the 

lognormal distribution shown below. Note that the normal distribution runs from -∞ to 

+∞, while the lognormal exists only for positive values of x. 

2

2

(ln )

2
1

( ) , 0
2





 

−

= − 

x

f x e x  

In economics, the lognormal appears in studies of inequality, the distribution of 

resources, and the size distribution of firms. The lognormal produces a range of forms 

depending on the value of the mean and standard deviation (be sure to experiment). 

 

 

2.6. The Poisson distribution 

 

Superficially, the Poisson distribution appears close to the binomial distribution. It too 

reflects a situation where two states exist – success/failure, pass/fail, etc. A key 

difference is that the Poisson distribution is open ended, while the binomial specifies the 

number of successes (or failures) within N trials. The formula for the Poisson distribution 

appears as 

( , )
!


−

=
u xe u

f x
x

, where u is the average number of successes and x is 

the actual number derived from an experience or experiment. 

 

Example: The average number of 911 calls on any day is 345. What is the probability that 

tomorrow will experience 200 calls? 

 

P(x,u) =(e-u)(ux)/x! = P(200,345)= (2.71828-345)(345200/200!), which is a tedious 

calculation.  

Here, note the average number of calls in a day, which sets the value of μ, and plugging 

in the actual value of calls produces the specific value needed. Fortunately, Excel makes 

this easy see the following examples. 

 

 

 

 

 

 

 

Video: Lognormal Distribution  

Lognormal.xlsx 

Poisson.xlsx Poisson 2.xlsx Poisson 3.xlsx 

https://vimeo.com/735286335
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E

x

a

m

p

l

e: If a vaccine does not 

protect 5% of recipients 

on average, then out of 

5,000 doses, what is the 

probability that exactly 

300 will not be 

protected? What is the 

probability that fewer than 300 will not have protection? What is the probability that 

more than 300 will not have protection? 

 

Answer: For the first, we need the value of the PDF when x = 400 and u = 250 (5% of 

5,000). In Excel, this is =POISSON(300,250,False) or .00021. For the second, we need the 

CDF or =POISSON(300,250,True)=.999, and the probability that more than 300 will not 

have protection is 1 -.999 =.001. 

 
 

 

 

 

The mean of the distribution 

is 10 (see the spreadsheet), 

but because the Poisson is 

not symmetric (unlike the 

normal), the probability at 

the mean (see PDF table in 

spreadsheet) is .12511 (the 

same as 9), and the value of 

the CDF is .58304, more than 

half the area under the PDF. 

Note the flat top of the PDF, 

a reflection of the fact that 

the Poisson is a discrete 

distribution, as is the 

binomial. 
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Figure 4: Poisson PDF 

Figure 5: Poisson CDF 

See Section 5 for a summary of the Excel expressions for the probability 

distributions. Note that all Excel probability functions have a last argument 

that is either TRUE for the CDF or FALSE for the PDF.  
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2.7. Detecting the correct distribution 

 

It can be puzzling to decide which distribution one needs for any specific problem. Here are 

some hints, given that you only have four distributions from which to choose. Note that 

hundreds of mathematical functions exist to support analytics. 

• If you have no information to suggest it is binary (pass/fail, on/off…) or a similar 

problem, then use the normal. It is the general “go to” probability function. 

• With a problem that has just two outcomes, it is either a binomial or a Poisson. A 

binomial problem will speak of success or failure in a set number of trials (four passes 

out of seven tests attempted), while a Poisson will define a range, often time (number 

of successes in the next four days, rejected job applications in the next week…). Note 

that the Poisson also has application with areas, such as the pattern of rocket strikes 

around an intended target. 

•  Certain phenomena tend to skew right, suggesting a lognormal would be right. Natural 

phenomena and competitive processes in both nature and society often produce 

“lopsided” results the lognormal can capture. 

• Tests for normality and other types of distributions are beyond the scope of this text. 

Many probability distributions exist, and economic analytics, especially Monte Carlo methods, 

use a range of these functions. (See Module 13). 

 

3. Sampling theory 

 

The concept of a sample is familiar, through the many political and attitudinal polls presented in 

the media. Less commonly understood is that official statistics, such as consumer prices and 

unemployment rates, depend on sample surveys. In business, surveys of consumers produce 

strategic information on preferences, price elasticities, and response to marketing. 

 

Intuitively, a sample is a small subset of the entire population. Collecting information from the 

sample is much less costly than collecting data from every member of the population; when we 

can get statistics from the sample to infer (stand for) the same attributes in the population, 

resource savings are considerable. What makes a sample, usually a tiny fraction of the 

population, a proxy (replacement) for a population? 
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In a word, random samples of “sufficient” size will allow inference from the attributes of the 

sample to the same attributes of the population. The term attribute stands for the measures of 

central tendency, variation, and any other measures used to describe a collection of numbers. 

 

When are samples not useful? If we know the probability distribution underlying a phenomenon, 

taking a sample has no point. For example, the expected pattern of heads and tails for 10 coin 

tosses is the same as the pattern for 100 tosses or 100 million. However, the political 

preferences of residents in Hong Kong are unknown except very generally, and a random sample 

supporting a survey is the best way to infer preference of the population. 

 

In Module 4 we used histograms to create frequency distributions. The key idea is that a 

population can generate countless different samples. A large university may have 30,000 or 

more students, which can produce many samples of 1,000 students. Imagine we select 1,000 

students for sample 1, then another 1,000 students (without replacement) for sample 2, and so 

on. If we are interested in grade point averages (GPAs), it is not hard to see that sample 1 and 

sample 2 will have different average GPAs. But let us take the average GPAs for these two 

samples. And let us keep taking averages of the ever-expanding numbers of samples. What 

happens is that, initially, when we have few samples, the average of the average GPAs varies, but 

as we build the number of samples, each new sample contributes a smaller weight to the 

growing pool of samples. As the number of samples continues to build, the average of the 

sample averages converges (becomes ever closer) to the average GPA of the population. 

  

Further, if one were to create a histogram of the sample averages, what results is the normal 

distribution. This powerful idea is the Central Limit Theorem. 

 

 

 

  

Central Limit Theorem: The mean of samples of sufficient size (n>30) from a population, will 

be close equal to the population mean, and the distribution of the sample means will be 

approximately normal. As the number of samples increases, the closer the mean of the 

samples will lie to the population mean. 
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3.3. Sampling distributions 

One of the important (and more difficult ideas to grasp) is the idea of a sampling distribution. 
Figure 4 below is a visual presentation of sampling from a population with replacement. 
 

 

Figure 6: Population and sample means,  variances 

 

 Each sample S1 – S4 has a mean X and sample standard deviation s that will typically not equal 

the population mean μ or σ, except by chance. Here is the key idea. If one takes all possible 

samples from the population, the average of the means of 

all possible samples will equal the population mean μ. The 

distribution of all values of X is normal. See the example 

for a demonstration of important ideas behind samples from a population. 

 
 
 
 
 
 

3.4. Central Limit Theorem 

At the heart of classical decision-making, there is the Central Limit Theorem (CLT), which the 
earlier section and associated example and video strongly suggested. The CLT has four elements: 

• Provided the sample size is large enough, the sampling distribution of the sample 
means is approximately normal (with the approximation getting better as the sample 
size increases). 

Video: Sampling Distribution  

Sampling Distribution.xlsx 

https://vimeo.com/735286566


Economic Analytics Using Computer Methods: ECON 2050 

Module 5: Introduction to probability  
 

©Gregory Mason June 2022                                                                                                                              21 
 

• The mean of the sampling distribution of the means equals the population mean, 
which makes the mean of a sample, selected at random from the population, an 
unbiased estimator of the population mean. This idea is useful because, if we wish to 
measure the average incomes of the 
residents of, say, Beijing, we do not need 
to ask everyone, just a sample of 1,000. Of 
course, the sample must be random, and everyone included in the survey must 
respond to the questions. 

• The standard deviation of the sampling distributions of means (AKA the standard 
error) has a special relationship with the standard deviation of the population, namely 

2 2

1
=

−
X

N
s

n
. In fact, the standard deviation of a sample is a biased estimator of the 

population standard deviation, which is why we need the correction 
1

N

N −
. 

 

• The population that generates the samples need not be normal. See []. 
 

 

 

3.5. Unusual observations 

We all experience unusual or out-of-the-ordinary events or people. We develop “rules of thumb” 

that allow us to take shortcuts in our decision-making. If rules of thumb derive from observation 

and experience, their use can be efficient. Real world data analytics deals with administrative 

data that often has mistakes and missing values. Data cleaning may seem like “rigging 

information” to produce a specific outcome but resolving errors in data will form a critical 

element of your work as applied economists. 

 

3.5.1. Deciding what is unusual 

Any time an event deviates too much from what we 

consider the norm or average, we wonder whether it 

is just a single aberration or signals a new trend. 

Example: If we experience a poor meal or bad 

service at our favourite restaurant, we can 

wonder whether the regular cook is off for the 

night or staff did not show up for work. But we 

usually discount it as a one-off experience. 

However, repeated bad experiences may lead 

us to revise our opinions, and it ceases to 

remain our favourite restaurant. 

Outliers vs unusual observations 

• The difference often comes down to 
judgment based on experience and 
knowledge. 

• Our experience informs us as to what 
might be an unusual but credible 
(possible) result. 

• In other instances, we might have 
repeated experimental or survey data 
that shows values for the mean, 
median, or variance for each survey. 
This  encourages us to develop ideas 
of what the usual heights, incomes, or 
level sales are for specific groups. 

Video: Central Limit Theorem 

Central Limit Theorem.xlsx 

https://vimeo.com/735286211
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Example: Someone who is 190 cm tall is not unusual in our experience of the 21st century, 

but three hundred years ago, they would be. Someone who is 210 cm tall would be 

unusual. However, at 230 cm, they would be well outside the normal range and may be a 

mistake. 

 
When do we judge something to be out of the norm? When do we decide that an observation is 
so far out of the norm that we reject the idea that it is a member of the group? 

 

Graphing the data may suggest that certain observations do not belong to the group. This occurs 

for two reasons: 

• Someone made a mistake in entering the data. 

• The outlier comes from another population and your data has hidden dimensions. 

 

Which is it? Including or excluding an outlier can affect statistics and other analytics, so deciding 

whether to include or exclude the outlier is important. 

 

Imagine we recorded sales made by each salesperson within a car dealership. The sales manager 

may believe that experience matters and salespeople with more experience tend to generate 

higher revenues. Figure 8 shows the relation between sales and years of experience. A new 

employee arrives, with modest experience, but who posts impressive sales numbers (Figure 7)? Is 

this employee someone who is radically different from the existing sales force? Or are their 

numbers within the norm of experience? 
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How unusual does an observation need to be? As 

the new employee’s “numbers” lie further from 

the historic averages, the more inclined we are to 

accept that this individual is unique in terms of 

natural ability, training, or another attribute. 

Formally, we say this observation comes from a 

different population. It may be that the new 

employee belongs to a particular ethnic group and 

attracts new clients to the business. 

 

The reason here is not as important as finding a 

rule or procedures for assessing when we can 

reject the idea that the new employee is not a 

member of the population that generated the 

historic norm. The “distance” that observation lies 

from the historic norm is an important measure. 

 

In other words, the farther away the new observation lies from the cluster of historic data, the 

more confident we are in rejecting the idea that this new employee’s numbers are different from 

the norm. In Figure 9, which numbers lie outside the norm? 
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Figure 8: Sales and experience Figure 7: New employee posts big numbers 

Figure 9: Which are the unusual salespersons? 
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3.5.2. Two standard deviations rule 

Fortunately, probability theory offers a way to detect an outlier, with two assumptions of course. 

First, we accept that a normal distribution is the rule producing our data; for natural, social, and 

economic phenomena, this often works. Second, referring to [Area under the Normal.xlsx], if we 

replace the fixed x values with a standard deviation scale, we can understand how deviations 

from the mean mark areas under the probability distribution. Table 7 is an extract from the 

spreadsheet, showing the added scale 

for standard deviations from the mean. 

The mean (10) lies 0 standard deviations 

away from itself, and the fixed value of 7 

is -1 standard deviations away, while the 

fixed value of 13 lies +1 standard 

deviations from the mean. 

 

Now we know the CDF traces out the 

area under the probability distribution, 

so to calculate the area associated with 

a + 1 std. deviation  we only need to 

subtract the area of the upper SD from 

the area of the lower SD, which here is 

.841345 -.158655 =.68269 = 68.27% of 

the area under the PDF. A + 2 SD band includes about 95.45% of the area under the PDF. Make 

sure to watch the video to understand this derivation. 

 

 

 

 

Table 7: Standard deviations and values of X 

7 0.08066 0.158655 -1.00 

7.5 0.09397 0.202328 -0.83 

8 0.10648 0.252493 -0.67 

8.5 0.11736 0.308538 -0.50 

9 0.12579 0.369441 -0.33 

9.5 0.13115 0.433816 -0.17 

10 0.13298 0.5 0.00 

10.5 0.13115 0.566184 0.17 

11 0.12579 0.630559 0.33 

11.5 0.11736 0.691462 0.50 

12 0.10648 0.747507 0.67 

12.5 0.09397 0.797672 0.83 

13 0.08066 0.841345 1.00 

The area shown by + 1 standard deviation encloses 
68% of the area under a normal curve. The area shown 
by + 2 standard deviations make up about 95% of the 
area under a normal curve. 

 
A + 2 SDs “rule” leaves 5% in the tails together (2.5% in 
each tail). 

 
A common decision is to reject observations t

hat lie more than two standard deviations from the 
mean as coming from that distribution. 

 
The common phrase 19 times out of 20 is a two 
standard deviations rule. 
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Figure 10: Normal distribution 
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Example: If the marks in a class have a mean of 70, with a standard deviation of 10, that 

means that 2.5% of the class will have a mark of 90 and over, and 2.5% of the class will have 

a mark of 50. These are the assumptions that govern the usual numerical mark to letter 

grade conversion. Courses that are mathematical and technical have marks with bimodal 

distributions (two peaks) and do not conform to the normal. Others are skew left and skew 

right. Such double peaks and asymmetry create problems in setting simple rules for 

classifying outliers and aligning numerical and letter grades. 

 

3.6. Classical statistical decision theory 

Classical statistical decision theory rests on the idea that one knows the underlying probability 

distribution governing the data (call this the “source” or “reference” distribution). Then, we can 

assess whether a new observation “belongs” to that reference distribution. The question is 

simple: Is the new observation “part of the family?” 

We never prove that the new observation is from the source distribution; rather, we calculate 

the probability of being wrong if we reject that claim. We create a statement, the null 

hypothesis, termed H0. After gathering evidence, we “judge” whether can accept the null; if not, 

we turn to an alternative hypothesis termed Ha. 

Here are examples of null hypotheses and their alternatives: 

• H0: Men and women have equal wages in welding occupations. Ha: Men and women have 

unequal wages in welding occupations. 

• H0: A coin that returns 70% heads on 20 tosses of a coin is unfair. Ha: The coin is fair. 

• H0: Before receiving an interview, a Black graduate in economics sends out the same 

number of resumés as a white graduate. Ha: Black and white graduates send out different 

numbers of resumés before receiving an interview. Or Ha’’: Black graduates send out 

more resumés than white graduates before receiving an interview. 

Notice the neutrality of the null in the first and third example. This is intentional. Often 

researchers have beliefs, such as wage discrimination exists based on sex, race, or age. By 

creating a null that asserts no discrimination exists, in this case, the test is the equality of wages, 

we create a rigorous decision model, where the evidence must be sufficiently strong to reject 

the null. Statistical decision theory uses the rejection of wrong ideas and not the acceptance of 

correct ideas. This ideal of “falsification” is a tenet of modern science. As we assemble evidence, 

such as male and female wages, we measure the difference between average wages and when 

that difference becomes large, accepting the null becomes untenable. The host of statistical 

tests and experimental designs create the structure for making that judgment about when to 

reject the null. 
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As evidence mounts that the gap between Black and white peoples’ wages are not zero, we take 

less risk in rejecting the null. The wider the gap, the lower the probability of being wrong when 

we reject the null, and we reject the null in favour of an alternative hypothesis. 

A null hypothesis for a statistical test and  a research hypothesis framing a research study or 

program related: a research hypothesis may result in a series of null hypotheses. A null 

hypothesis poses a specific statement, capable of falsification by assembling evidence. The null is 

not a proposition you prove directly, but a statement you can reject based on the evidence, with 

a specific chance of being wrong in that rejection. Recall the discussion about unusual 

observations. The more unusual the observation, the less risk we take in rejecting the idea that it 

is associated within the pool of accumulated observation. 

It is also possible to frame null hypotheses as two-sided or one-sided by how one creates the 

alternative. The first two hypotheses above have two-sided alternatives – the wages of male and 

female welders are different. A one-sided alternative might be men’s wages are higher (or lower) 

than women’s wages. The third example presents a two-sided alternative (Ha’) and a one-sided 

alternative Ha’’. In this course, we will only consider the simplest two-sided decision problem. 

In simple decision scenarios with two options, we can make two types of errors. A Type 1 error 

occurs when we reject a null hypothesis when we should accept it; a Type 2 error occurs when 

we accept a null hypothesis when we should reject it. In a court of law, we assume an accused is 

innocent until proven guilty (null hypothesis is that someone is innocent), then a Type 1 error is 

convicting a guilty person. Alternatively, a Type 2 error is accepting the null when we should 

reject it (releasing a guilty party). 

This section focuses on a common statistical test, namely, evaluating the difference of means 

involving normal distributions. Other tests exist involving differences of means with other 

distributions, differences of 

proportions, differences in variances, 

etc. 

Figure 11 is the PDF for a normal 

distribution with μ =10 and σ=3. The 

range of + 3 around the mean (from 7 

to 13) is one standard deviation and 

defines 68% of the area under the 

curve; the range of +6 (4 to 16) defines 

95% of the area. By implication, 2.5% is 

in each tail, and so 5% combined. When 

the risk of being wrong (in rejecting the 

null) falls to 5%, most accept the 

Figure 11: Normal showing standard deviations  



Economic Analytics Using Computer Methods: ECON 2050 

Module 5: Introduction to probability  
 

©Gregory Mason June 2022                                                                                                                              27 
 

evidence and switch to the alternative hypothesis. Setting this risk tolerance of being wrong 

depends on context. Plane manufacturers (and passengers) would not accept a 5% rule for 

rejecting a null hypothesis. 

Imagine that the difference in average male and female wages for two random samples of 

welders were less than one standard deviation, falling in the area noted as 68.28%. If we reject 

the null hypothesis, we take a risk in that rejection. To be specific, if the difference were -.33 

standard deviations (male wages minus female wages), while this may conform to our 

expectations, the difference is small. Now imagine the difference in the wages were -2.00 

standard deviations. If we reject the null, we assume an approximately 2.5% chance (2.27%) of 

being wrong in that rejection. 

Example: Imagine that male welder wages are $27.50 per hour on average with a 

standard deviation of $5.75. If female wages are $23.25, is the difference between male 

and female welders’ wages statistically significant? 

Assuming that the variance of male and female wages is the same (a strong assumption, relaxed 

below), the Excel function =NORM.DIST finds the probability for a value of X with a given mean 

and standard deviation, which is .0000078, meaning that we face a small risk in rejecting the 

hypothesis that this wage of $23.25 comes from the population of male wages. If the standard 

deviation is $3.1, then this probability falls to .013 if the mean of male wages is $24.15. See . 

 

As an aside, this example presented a one-tailed test for reasons explained in the next section. 

 

3.7. The Z score and critical values 

The process of calculating the probabilities associated with a test value (female wages) with a 

reference distribution defined by mean and standard deviation (male wages) is quite 

cumbersome. It would be handy to have a single score and a table that would tell us whether we 

were taking a 10%, 5%, or 1% chance of making a Type 1 error when we reject the null 

hypothesis. The Z score does that and has the formula: 

0Z =(X - X)/σ  

 

In the spreadsheet [Male and Female Welders Standard.xlsx] the wage scale uses the formula 

above, and the Excel function =STANDARDISE transforms wages to a Z score. This creates a 

standard normal distribution with a mean of 0. The same probabilities are available after this 

Video: Male and Female Welders 

Male and Female Welders.xlsx 

https://vimeo.com/735286354
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transformation, but the standard normal distribution supports more direct estimation of values 

associated with a 10%, 5% and 1% chance of making a Type 1 error in rejecting the null. 

 

 

3.8. One-tail and two-tail tests 

Consider two null hypotheses: 

• H0: Male and female welder wages are equal. 

• H0: Male welder wages are more than female 

welder wages. 

In the first instance H0: μm=μf, and in the second H0: 

μm>μf. The first case uses a two-tail test, while the 

second a one-tail test. Continuing with the simple 

(simplistic) assumption where the information on the 

distribution of male wages follows the normal with a 

known mean (μm) and standard deviation σm, with a 

single observation for female wages Xf, the example 

[Male and Female Welders Standard.xlsx] shows the 

probability that a specific female wage came from the 

proposed male wage. 

Figure 12 shows the critical values associated with a 

5% chance of making a Type 1 error in rejecting the 

null. If the null poses equality, then a + 2.5% critical 

value reflects that a female wage above or below the 

male mean is possible. With a null posing inequality, specifically that we hypothesize that male 

welder wages are greater than female welder wages, the one-tail test is right. 

For a one-tail test (the null states that male wages exceed female wages), the critical values 

associated with the 10%, 5%, and 1% Type 1 error rates are +1.28, +1.65, and +2.33; the lower 

the error one is willing to accept, the larger the difference between the mean of the reference 

distribution (male wages) and the sole test observation (the single observation on female 

wages). The critical values may be positive or negative, depending on whether the test 

observation lies above or below the reference mean (μm). 

Now consider a more sophisticated (and scientifically better) example of two samples of wages, 

one for male welders, the other for female welders. We now have two means, μm and μf, as well 

as two standard deviations σm and σf. The null hypotheses are the same but slightly rewritten 
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Mean male wage = 27.5, SD= 6 

Mean female wage = 21.25, SD = 3 

The important idea is that, 

compared to the distribution of 

female wages, the distribution of 

male wages has a higher mean 

(higher average wages) and a 

higher standard deviation (more 

variability, resulting in a “flatter” 

shape. 

Mean female wage = 21.25, SD = 3 

• H0: μm - μf = 0; Ha = μm - μf > 0 (or Ha = μm - μf < 0) (one-tailed test) 

• H0: μm - μf = 0; Ha = μm - μf ≠ 0 (two-tailed test) 

 

 

 

  
1mX           

2mX        
3mX              

mkX                          1fX     2fX            3fX                     fkX  

2 2 2( )m fX X−                                  
3 3 3( )m fX X−                        ( )mk fk kX X−  

 

 Above, two populations of the wages of all male welders (m) and all female welders (f) have 
means of μm and μf and standard deviations of σm and σf. Xm1 is a sample (not a single 
observation) of male wages drawn from Population(m), 
Xf1 is a sample of female wages from Population(f). We 

have many such samples:
1mX  is the mean of sample 1 

from the male population and 1fX the mean of sample 1 from the female population. This leads 

to 1 1m fX X−  as the first element of the sampling distribution of the difference of means. To 

make sense of the sampling distribution of the means, several pairs of samples from 
Population(m) and Population(f), at least 10 and preferably 30 or more, will support reliable and 
valid estimates of the mean of the differences in means. Most research studies will involve a 
single pair. This needs a concrete example, so see…. 

 

 

 

 

 

 

 

Population(m) 

Xm1

Xm2

Xm3

Xmk

Population(f) 

Xf1

Xf2

Xf3

Xfk

Male: Mean = μm

SD=σm

Female: Mean = μf

SD=σf

1 1 1( )m fX X−

Video: Difference in Means 
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Figure 13: Example of wage distributions 

https://vimeo.com/735286317
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Mean male wage = 27.5, SD= 3 

Mean female wage = 18.5, SD = 3 

In contrast to the example in 

Figure 13, the two distributions 

have different means, but the 

same standard deviation. Both the 

difference in means and the 

difference in standard deviations 

affect the decision on rejection of 

accepting the null hypothesis . 

 

 

 

Figure 14: Example of wage distributions 

 

 

As the distributions of male and female welder wages “separate,” the risk falls in rejecting the 

null hypothesis that male and female wages are equal. It is possible to create a Z score for 

differences of means, but first note that 

  
1 1

1 1
m f

m fX X
X X  

−
= −  and 

1 1

2 2 1/2

1 1 1 1( / / )
m f

m m f fX X
N N  

−
= +  

 

The example shows the calculation in detail, and the video 

describes the process of creating this simulation. 

 

 

Excel has a function =Z.TEST, which calculates the Z score for a single observation against a set of 

values. (View in the help menu of Excel). 

The three levels of 10%, 5%, and 1% are standard in economic research; 10% when for social or 

political reasons one wishes to (needs to) reject the null hypothesis, which is the common 

standard, and 1%, when the risks of a Type 1 error are high. Selecting the right Type 1 error level 
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Video: Difference in Means Z Score 

Difference in Means.xlsx 

Diff of Means Z score.xlsx 

https://vimeo.com/735286296
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requires judgment – when the costs of rejecting a true null hypothesis is high, one will typically 

want the Z score to be higher (p value lower). This table presents the critical values of Z for 

different Type 1 errors. 

 

Table 8: Critical values of the Z score (standard normal distribution) 
Level of 
Significance 

10% 5% 1% .5% 

Value of Z for 
one-tailed tests 

+1.28 +1.65 +2.33 +2.58 

Value of Z for 
two-tailed tests 

+1.65 +1.96 +2.58 +2.81 

 

Just to recall, a one-tailed test is associated with an inequality as the null (H0: Female wages 

exceed male wages), while the two-tailed test is associated with an equality as the null (H0: 

Female and male wages are equal). The two-tailed test at the 5% level has a Z score of +1.96, and 

we will see how this becomes a rule of thumb in testing regression models later in the course. 

 

4. A very brief note on Bayesian analysis 

Bayesian analysis reflects the work of Thomas Bayes. Very briefly, this style of statistical decision-

making starts our analysis with a belief or prior. Informally, we usually have a belief about the 

state of the world before we begin our research. For example, we might believe men and 

women receive the same pay as welders. This is the null and termed the prior probability of 

distribution. Then, as evidence mounts in the form of observed wages, we may choose to revise 

that expectation. The degree to which we revise our beliefs depends on the degree of 

discrepancy between the new observation on female wages and the number of these 

“discordant” observations. 

Example: If I have 100 observations on male wages and calculate a mean of $25 and SD = 

20, a single observation for a female welder at $23 would not cause any reason to expect 

the distribution of female wages was different than that of men. In other words, no 

reasons exist to revise the prior. But with more observations on female wages lying 

below $25, the analyst will revise the prior. Observations lying much below the male 

mean should cause a faster revision than a larger number just below the male mean. 

5. Summary 

 

This Module has presented a basic introduction to classical statistical decision-making. 

Advancements have occurred in decision theory and in the analysis of relationships. 

https://www.britannica.com/biography/Thomas-Bayes
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• The normal distribution, and specifically the standard normal in evaluating the difference 

of means, is but one in common use. In the next two modules, the t and the F 

distributions will figure prominently in testing regression models. 

• This chapter has not examined the risks associated with accepting a false hypothesis or 

accepting a null when we should reject it. 

• One concept not covered in this Module is bias in a statistic. The experiment shown in [] 

shows why the mean of a sample is an unbiased estimator of the population mean, but 

the sample variance tends to overstate the population variance. 

 

 

Imagine our survey of male and female wages showed a statistically significant difference (we 

can reject the null of equality with less than a 1% chance of making a Type 1 error). Does it 

require government regulation? Not without more analysis. For example, women have only just 

recently entered the trades in significant numbers, so the sample of female welders may be 

much younger, on average, than the sample of male welders. Male welders may have seniority, 

worked in a range of environments, taken upgrading courses, and not experienced work 

interruption (due to childbirth). All these factors (lurking variables) and others that we lack the 

imagination to consider may affect the distribution of welding wages. The next two modules 

present techniques for introducing added information into our analysis of wages, which serves 

other purposes, such as measuring the interconnections among social and economic factors 

and forecasting. 

 

Annex: Excel statistical/probability functions and formulas 

Excel statistical formulas 

Formula  Explanation Example 

=AVERAGE(range) Returns the mean of row, 
column, or array (set of 
contiguous cells). 

=AVERAGE(A1:A30) returns 
the average of contents in 
cells A1 to A30. The cell 
location of this formula 
cannot be in cells A1 to A30 
(circular reference), and it will 
ignore cells with blanks or 
text. 

=STDEV.P(range) 
=STDEV.S(range) 
=VAR.P(range) 
=VAR.S(range) 

Returns the standard 
deviation or variance of a 
column, row, or array. Use .P 
for the population value and 
.S for a sample. When unsure, 

=STDEX.P(A1:F30) returns the 
standard deviation of an array 
of numbers (ignoring blanks 
and text). 

Bias in a Statistic.xlsx 
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Excel statistical formulas 

Formula  Explanation Example 

use the .P version. 

=MIN(range) 
=MAX(range) 
 

Returns the 
minimum/maximum value in 
the row, column, or array. 

=MAX(A1:A30)-MIN(F2:F10) 
=MAX(A1:A30)-MIN(A1:A30) 
returns the statistic “range.” 
 
These functions are useful in 
flagging outliers. 

=MED(range) Returns the median of a row, 
column, or array. 

=MED(A1:A30) 
Comparing the results of the 
simple mean (=AVERAGE) and 
the median can give clues on 
whether the distribution is 
skewed. (Mean > Median 
implies skew right and Mean 
< Median suggest skew left). 

=GEOMEAN(range)  Returns the geometric mean 
of a row, column, or array. 

=GEOMEAN(A1:F20) 

Notes: 

• The reference cell must not be in the specified range, otherwise you will get a “circular 
reference” error. 

• While these formulas will ignore blank cells and text, others will return errors if the 
rows are all blanks. 

• You can write the formulas in lower or uppercase (or a combination); Excel converts 
them all to uppercase. 

 

Excel probability formulas 

Formula Explanation  Example 
=BINOM.DIST (number_s,trials, 
probability_s, cumulative) 

This provides the CDF 
(cumulative = True) or PDF 
(cumulative = False) for 
the binomial with “s” 
successes out of n trials, 
with a probability of 
success. 

=BINOM.DIST(5,23,.03,T) yields 
the probability of, at most, five 
successes out of 23 trials when 
the probability of success is .03. 
= BINOM.DIST(5,23,.03,F) yields 
the probability of exactly five 
successes out of 23 trials when 
the probability of success is .03. 
 
(Note that the definition of T and 
F for cumulative is the same for all 
probability functions). 

=NORM.DIST(x, mean, 
standard_dev, cumulative) 

This provides the 
CDF/PDF(cumulative = 

=NORM.DIST(5,15, 
10,True/False) is the probability 
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Excel probability formulas 

Formula Explanation  Example 

True/False) for the value 
of x, for normal 
distribution with the 
stated mean and 
standard deviation. 

of seeing at least/exactly the 
value of 5 with a normal 
distribution with a mean of 15 
and a standard deviation of 10. 

=LOGNORM.DIST((x, mean, 
standard_dev, cumulative) 

This provides the 
CDF/PDF(cumulative = 
True/False) for the value 
of x, for lognormal 
distribution with stated 
mean and standard 
deviation. 

=LOGNORM.DIST(5,15, 
10,True/False) is the probability 
of seeing at least/exactly the 
value of 5 with a lognormal 
distribution with a mean of 15 
and a standard deviation of 10. 

=POISSON.DIST(x, mean, 
cumulative) 

This provides the 
CDF/PDF(cumulative = 
True/False) for the value 
of x, for Poisson with the 
stated mean. 

=POISSON.DIST(5,10,True/False) 
is the probability of seeing at 
least/exactly 5 if the 
distribution is Poisson with a 
mean of 10. 

 


